🎉 One-stop destination for all your technical interview Preparation 🎉
triangle[0][0]
is stable, we can start from there instead of starting from the bottom.int f(vector<vector<int>>& triangle, int n, int i, int j)
{
if (i == n - 1)
return triangle[i][j];
int down = triangle[i][j] + f(triangle, n, i + 1, j);
int dig = triangle[i][j] + f(triangle, n, i + 1, j + 1);
return min(down, dig);
}
int minimumPathSum(vector<vector<int>>& triangle, int n)
{
return f(triangle, n, 0, 0);
}
int f(vector<vector<int>>& triangle, int n, int i, int j, vector<vector<int>>& dp)
{
if (i == n - 1)
return triangle[i][j];
if (dp[i][j] != -1)
return dp[i][j];
int down = triangle[i][j] + f(triangle, n, i + 1, j, dp);
int dig = triangle[i][j] + f(triangle, n, i + 1, j + 1, dp);
return dp[i][j] = min(down, dig);
}
int minimumPathSum(vector<vector<int>>& triangle, int n)
{
vector<vector<int>> dp(n, vector<int>(n, -1));
return f(triangle, n, 0, 0, dp);
}
dp
equal to last row of triangle
.i
we were going from 0
to n-2
in memoization, but here we will go from n-2
to 0
.j
we can go from 0
to n
.f(0,0)
so here we return dp[0][0]
.int minimumPathSum(vector<vector<int>>& triangle, int n)
{
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int j = 0; j < n; j++) {
dp[n - 1][j] = triangle[n - 1][j];
}
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j < n; j++) {
int down = triangle[i][j] + dp[i + 1][j];
int dig = triangle[i][j] + dp[i + 1][j + 1];
dp[i][j] = min(down, dig);
}
}
return dp[0][0];
}
dp[i+1] = prev, as we are going from bottom to top
dp[i] = curr
int minimumPathSum(vector<vector<int>>& triangle, int n)
{
vector<int> prev(n, 0), curr(n, 0);
for (int j = 0; j < n; j++) {
prev[j] = triangle[n - 1][j];
}
for (int i = n - 2; i >= 0; i--) {
for (int j = 0; j < n; j++) {
int down = triangle[i][j] + prev[j];
int dig = triangle[i][j] + prev[j + 1];
curr[j] = min(down, dig);
}
prev = curr;
}
return prev[0];
}