Complete-Preparation

🎉 One-stop destination for all your technical interview Preparation 🎉

View the Project on GitHub

Triangle 🌟🌟

Recursive Solution

Code

int f(vector<vector<int>>& triangle, int n, int i, int j)
{
    if (i == n - 1)
        return triangle[i][j];
    int down = triangle[i][j] + f(triangle, n, i + 1, j);
    int dig = triangle[i][j] + f(triangle, n, i + 1, j + 1);
    return min(down, dig);
}

int minimumPathSum(vector<vector<int>>& triangle, int n)
{
    return f(triangle, n, 0, 0);
}

Memoization(top-down)

Code

int f(vector<vector<int>>& triangle, int n, int i, int j, vector<vector<int>>& dp)
{
    if (i == n - 1)
        return triangle[i][j];
    if (dp[i][j] != -1)
        return dp[i][j];
    int down = triangle[i][j] + f(triangle, n, i + 1, j, dp);
    int dig = triangle[i][j] + f(triangle, n, i + 1, j + 1, dp);
    return dp[i][j] = min(down, dig);
}

int minimumPathSum(vector<vector<int>>& triangle, int n)
{
    vector<vector<int>> dp(n, vector<int>(n, -1));
    return f(triangle, n, 0, 0, dp);
}

Tabulation(bottom-up)

Code

int minimumPathSum(vector<vector<int>>& triangle, int n)
{
    vector<vector<int>> dp(n, vector<int>(n, 0));
    for (int j = 0; j < n; j++) {
        dp[n - 1][j] = triangle[n - 1][j];
    }
    for (int i = n - 2; i >= 0; i--) {
        for (int j = 0; j < n; j++) {
            int down = triangle[i][j] + dp[i + 1][j];
            int dig = triangle[i][j] + dp[i + 1][j + 1];
            dp[i][j] = min(down, dig);
        }
    }
    return dp[0][0];
}

Space Optimized Tabulation

Code

int minimumPathSum(vector<vector<int>>& triangle, int n)
{
    vector<int> prev(n, 0), curr(n, 0);
    for (int j = 0; j < n; j++) {
        prev[j] = triangle[n - 1][j];
    }
    for (int i = n - 2; i >= 0; i--) {
        for (int j = 0; j < n; j++) {
            int down = triangle[i][j] + prev[j];
            int dig = triangle[i][j] + prev[j + 1];
            curr[j] = min(down, dig);
        }
        prev = curr;
    }
    return prev[0];
}