π One-stop destination for all your technical interview Preparation π
/* A Naive recursive implementation of 0-1 Knapsack problem */
int knapSack(int W, int wt[], int val[], int n)
{
// Base case - If n is 0 or w is 0, then return 0
if (n == 0 || W == 0)
return 0;
// choice diagram code
// if weight of last item(nth item) is less than or equal to W we can add it else not.
if (wt[n - 1] <= W)
{
// Return the maximum of two cases: (1) nth item included (2) not included
return max(knapSack(W, wt, val, n - 1), val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1));
}
else if (wt[n - 1] > W)
{
// Don't include the nth item and reduce the input
return knapSack(W, wt, val, n - 1);
}
}
int dp[1002][1002];
void initialize()
{
for (int i = 0; i < 1002; i++)
for (int j = 0; j < 1002; j++)
dp[i][j] = -1;
}
int knapSackRec(int W, int wt[], int val[], int n)
{
// Base case - If n is 0 or w is 0, then return 0
if (n == 0 || W == 0)
return 0;
// If this state is previously present we return it.
if (dp[n][W] != -1)
return dp[n][W];
// if weight of last item(nth item) is less than or equal to W we can add it else not.
if (wt[n - 1] <= W)
{
// Return the maximum of two cases: (1) nth item included (2) not included
return dp[n][W] = max(knapSackRec(W, wt, val, n - 1), val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1));
}
else if (wt[n - 1] > W)
{
// Don't include the nth item and reduce the input
return dp[n][W] = knapSackRec(W, wt, val, n - 1);
}
}
int knapSack(int W, int wt[], int val[], int n)
{
initialize();
return knapSackRec(W, wt, val, n);
}
if(i==0 | Β | j==0) dp[i][j] = 0; |
// dp[n+1][W+1] - Global declaration initialize it with 0 , no need for initialization, n = i, W = j
int dp[1002][1002];
int knapSack(int W, int wt[], int val[], int n)
{
for (int i = 1; i < n + 1; i++)
{
for (int j = 1; j < W + 1; j++)
{
// if(i==0 || j==0)dp[i][j] = 0; if we start from i=0 and j==0 include this condition.
if (wt[i - 1] <= j)
{
dp[i][j] = max(dp[i - 1][j], val[i - 1] + dp[i - 1][j - wt[i - 1]]);
}
else
{
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[n][W];
}
int knapSack(int W, int wt[], int val[], int n)
{
int dp[W + 1];
memset(dp, 0, sizeof(dp));
for (int i = 1; i < n + 1; i++)
{
for (int j = W; j >= 0; j--)
{
if (wt[i - 1] <= j)
dp[j] = max(dp[j], dp[j - wt[i - 1]] + val[i - 1]);
}
}
return dp[W];
}
Time Complexity: O(N*W) As redundant calculations of states are avoided.
Auxiliary Space: O(W) As we are using 1-D array instead of 2-D array.