π One-stop destination for all your technical interview Preparation π
You are given an m x n
integer array grid where grid[i][j]
could be:
-> 1 representing the starting square. There is exactly one starting square.
-> 2 representing the ending square. There is exactly one ending square.
-> 0 representing empty squares we can walk over.
->-1 representing obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
class Solution{
private:
int dfs(vector<vector<int>> &grid, int x, int y, int zero){
int r = grid.size(), c = grid[0].size();
if (x < 0 || y < 0 || x >= r || y >= c || grid[x][y] == -1) return 0;
if (grid[x][y] == 2) return zero == -1 ? 1 : 0;
// DO
grid[x][y] = -1;
zero--;
// RECUR
int totalPaths = dfs(grid, x + 1, y, zero) +
dfs(grid, x - 1, y, zero) +
dfs(grid, x, y + 1, zero) +
dfs(grid, x, y - 1, zero);
// BACKTRACK
grid[x][y] = 0;
return totalPaths;
}
public:
int uniquePathsIII(vector<vector<int>> &grid){
int zero = 0, sx = 0, sy = 0;
int r = grid.size(), c = grid[0].size();
for (int i = 0; i < r; i++){
for (int j = 0; j < c; j++){
if (grid[i][j] == 0)
zero++;
else if (grid[i][j] == 1){
sx = i; //starting x
sy = j; //starting y
}
}
}
return dfs(grid, sx, sy, zero);
}
};
class Solution {
private:
int dfs(vector<vector<int>>& grid, int r, int c, int start_r, int start_c, int zeros)
{
if (start_r < 0 || start_r >= r || start_c < 0 || start_c >= c || grid[start_r][start_c] == -1)
return 0;
if (grid[start_r][start_c] == 2)
return zeros == -1 ? 1 : 0;
// DO
grid[start_r][start_c] = -1;
zeros--;
// RECUR
int totalPaths = dfs(grid, r, c, start_r + 1, start_c, zeros) +
dfs(grid, r, c, start_r - 1, start_c, zeros) +
dfs(grid, r, c, start_r, start_c + 1, zeros) +
dfs(grid, r, c, start_r, start_c - 1, zeros);
// UNDO
grid[start_r][start_c] = 0;
// zeros++;
return totalPaths;
}
public:
int uniquePathsIII(vector<vector<int>>& grid)
{
int r = grid.size();
int c = grid[0].size();
int start_r = 0, start_c = 0;
int zeros = 0;
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
if (grid[i][j] == 0)
zeros++;
else if (grid[i][j] == 1) {
start_r = i;
start_c = j;
}
}
}
return dfs(grid, r, c, start_r, start_c, zeros);
}
};
[Java Easy Solution | Β | DFS + Backtracking | Β | Explanation (Simplified)](https://leetcode.com/problems/unique-paths-iii/discuss/1553873/Java-Easy-Solution-oror-DFS-%2B-Backtracking-oror-Explanation-(Simplified)) |