π One-stop destination for all your technical interview Preparation π
Given the root of a binary search tree (BST) with duplicates, return all the mode(s) (i.e., the most frequently occurred element) in it.
If the tree has more than one mode, return them in any order.
Assume a BST is defined as follows:
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count). ππ
class Solution {
private:
void dfs(TreeNode* root, unordered_map<int, int>& mp, int& max) {
if (root == nullptr) {
return;
}
mp[root->val]++;
if (mp[root->val] > max) {
max = mp[root->val];
}
dfs(root->left, mp, max);
dfs(root->right, mp, max);
}
public:
vector<int> findMode(TreeNode* root) {
unordered_map<int, int> mp;
vector<int> res;
int max = 0;
dfs(root, mp, max);
for(auto& [k, v] : mp) {
if (v == max) {
res.push_back(k);
}
}
return res;
}
};
class Solution {
public:
vector<int> findMode(TreeNode* root)
{
unordered_map<int, int> mp;
// iterative dfs
stack<TreeNode*> st;
st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
st.pop();
mp[node->val]++;
if (node->left) st.push(node->left);
if (node->right) st.push(node->right);
}
vector<int> res;
int mx = 0;
for (auto& [k, v] : mp) {
mx = max(mx, v);
}
for (auto& [k, v] : mp) {
if (v == mx) res.push_back(k);
}
return res;
}
};
class Solution {
void inorder(TreeNode* root, int& prev, int& currFreq, int& maxFreq, vector<int>& res)
{
if (!root) return;
inorder(root->left, prev, currFreq, maxFreq, res);
if (prev == root->val) {
currFreq++;
} else {
currFreq = 1;
}
if (currFreq == maxFreq) {
res.push_back(root->val);
} else if (currFreq > maxFreq) {
res.clear();
res.push_back(root->val);
maxFreq = currFreq;
}
prev = root->val;
inorder(root->right, prev, currFreq, maxFreq, res);
}
public:
vector<int> findMode(TreeNode* root)
{
vector<int> res;
int maxFreq = 0, currFreq = 0, prev = INT_MIN;
inorder(root, prev, currFreq, maxFreq, res);
return res;
}
};
Coming Soon β¦
TODO: solve using morris traversal.