Complete-Preparation

πŸŽ‰ One-stop destination for all your technical interview Preparation πŸŽ‰

View the Project on GitHub

322. Coin Change 🌟🌟

You are given an integer array coins representing coins of different denominations and an integer amount representing a total amount of money.

Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

You may assume that you have an infinite number of each kind of coin.

Recursive solution (TLE)

Code


class Solution {
private:
    int coinChangeRec(vector<int>& coins, int amount, int i)
    {
        if (amount == 0) return 0;
        if (i == 0) return INT_MAX - 1;

        if (coins[i - 1] <= amount) {
            // return min(use(+1), not-use);
            return min(1 + coinChangeRec(coins, amount - coins[i - 1], i), coinChangeRec(coins, amount, i - 1));
        } else {
            // return not-use;
            return coinChangeRec(coins, amount, i - 1);
        }
    }

public:
    int coinChange(vector<int>& coins, int amount)
    {
        int minCoins = coinChangeRec(coins, amount, coins.size());
        return minCoins == INT_MAX - 1 ? -1 : minCoins;
    }
};

Memoization (Top-Down) (AC)

Code

class Solution {
private:
    int coinChangeRec(vector<int>& coins, int amount, vector<vector<int>>& dp, int i)
    {
        if (amount == 0) return 0;
        if (i == 0) return INT_MAX - 1;

        if (dp[i][amount] != -1)
            return dp[i][amount];

        if (coins[i - 1] <= amount) {
            // return min(use, not-use);
            return dp[i][amount] = min(1 + coinChangeRec(coins, amount - coins[i - 1], dp, i), coinChangeRec(coins, amount, dp, i - 1));
        } else {
            // return not-use;
            return dp[i][amount] = coinChangeRec(coins, amount, dp, i - 1);
        }
    }

public:
    int coinChange(vector<int>& coins, int amount)
    {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, -1));
        int minCoins = coinChangeRec(coins, amount, dp, n);
        return minCoins == INT_MAX - 1 ? -1 : minCoins;
    }
};

Tabulation (Bottom-Up) (AC)

Code

class Solution {
public:
    int coinChange(vector<int>& coins, int amount)
    {
        int n = coins.size();
        vector<vector<int>> dp(n + 1, vector<int>(amount + 1, 0));
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= amount; j++) {
                if (j == 0) dp[i][j] = 0;
                else if (i == 0) dp[i][j] = INT_MAX - 1;
                else if (coins[i - 1] <= j) {
                    dp[i][j] = min(1 + dp[i][j - coins[i - 1]], dp[i - 1][j]);
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[n][amount] == INT_MAX - 1 ? -1 : dp[n][amount];
    }
};